Collaborative live-coding in class

by Thomas Arildsen

I am in the process of revising a course I teach on scientific computing. This is also where my experiments with GPU computing introduced in my previous post come into play fairly soon.

The course progresses at a slow pace this spring, because I need some time to revise the lectures and experiment with the new content. In addition to replacing and updating some of the content of the course, I am also experimenting with ways to hopefully spice up my teaching a bit. Admitted, I am guilty of usually just “reciting slides” in this course and I think this is far too boring for the students and our time can be spent more efficiently and in a more engaging way.

I am going to introduce elements of flipped learning in the course. As a starting point, I have experimented with the two introductory lectures on Python that are some of the first the students see in the course. Some students have already been introduced to Python before in a previous course of mine. Some other students have never used Python before, but most of the students have prior programming experience. To cater to the latter students, I introduce the students quite briefly to Python and mainly by examples. I assume they understand typical programming concepts already and then it is more or less a question of learning which features exist in Python and how the syntax looks.

Now, as for the flipped learning aspects, my interpretation of this is that instead of just reciting slides to the students as usual, I have just given the slides to the students before the lecture and with the usual, more dense reading material as background literature so they can study this themselves. Then I instead spent the lectures on live-coding examples of the features I thought were important to demonstrate (they do exercises on their own as well). I want to improve on this later in the course or next spring to take feedback from the students beforehand on which areas seemed particularly difficult to them, and then focus on demonstrating those parts.

By live-coding examples, I mean that instead of just showing the students ready-made examples, I type and execute the examples (complete with typos, accidental runtime errors etc.) from scratch in front of the students. I believe this has several didactic benefits: it introduces the students to the example one line at a time without too much code to comprehend all at once. It keeps the pace down, hopefully making it easier to follow as I explain while typing. They get to experience hiccups along the way such as trouble caused by typos and maybe even me forgetting certain details. I hope this makes the development process more comfortable for them, seeing that “even I” can make mistakes, that they are no big deal, and how to constructively fix them along the way.

Now, I did not just want to keep it to live-coding for the students. I wanted to engage the students themselves in the process in a collaborative manner. My vision was this: I want a code-editing window on the projector screen where we can all type in code and execute it on the fly. My first idea for a solution was to use the Jupyter notebook. I like this interface because it allows me to “compartmentalise” code into separate cells containing the individual examples I want to make. The problem is that Jupyter does not really support real-time collaborative editing. Well, it seems it does through jupyterlab-google-drive, but unfortunately that is not going to last: Deprecation of the Google Realtime API. Because of this, I decided it did not want to bother trying to set it up for my course. There are probably other alternatives and I would really appreciate your tips, but for my first try I stumbled on CodeBunk.

CodeBunk is a simple real-time collaborative code editor with an interpreter terminal and a chat window. It supports Python 2.7 and 3.4 (which I need for my course), but also a wide range of other programming languages. When you create a new “bunk”, you can share the link to it with your collaborators who can then enter and you can all edit and execute the code at the same time. It seems it is meant as a tool for interviewing job candidates for programming jobs, and it is probably not meant for more than around five simultaneous collaborators, but I decided to just give it a try for my course (with about 30 students) anyway. It is a commercial product and you will have to pay for using it. Each time you enable a bunk for collaborative editing, you have to spend a session (which allows using the bunk for one or two hours as far as I recall). A new account comes with 5 trial sessions, but after that you will have to pay for more.

I started my live coding experiment from an empty code bunk. I showed the editor on the projector screen and also invited my students to join in from their own computers. I had prepared a “script” of different features that I wanted to demonstrate to the students and started creating examples of those. I invited the students to type in the solution if they knew how to it.

Screenshot-2018-3-6 CodeBunk Numerical Scientific Computing(1)

It worked quite well, but with some drawbacks:

  • First of all, I could only use it for my basic Python lecture as CodeBunk does not offer all of the scientific computing packages that I need for my course (it does have NumPy, SciPy, some sci-kits  – I do not know which, and Pandas, but you cannot use Matplotlib).
  • Handling about 30 students trying to contribute at the same time can be quite a mouthful. I am not sure the service was actually able to let them all interact with it at the same time (I could not keep track of the number of cursors). Most of the students played along nicely most of the time and were good at not all trying to type the same thing at the same time, but at times some of them also got a bit too busy typing silly comments.
  • Running the entire set of examples in just one big script is a bit too unstructured and I had to comment out previous parts as I went along in order not to have to re-run everything for each tiny new bit. This is where a Jupyter notebook with its separate cells would have been nice.

In their feedback, the students gave me the impression that they were overall satisfied with the experience. The complaints were about parts of the material being too basic, the whole session taking a bit too long, and the occasional chaos with bit too much of silly commenting going on. I of course need to adjust my teaching to their feedback, but in the big picture I like the concept and I would like to continue experimenting with it.

Since this experiment a couple of weeks ago, I have discovered Colaboratory from Google. This is based on the Jupyter notebook and also offers real-time collaborative editing. Moreover, it also offers more of the scientific computing packages I usually use, and you can even install additional packages available on PIP, so this will probably be the next experimental tool I introduce in the course.

I would love to hear from you on similar, or different, experiences with teaching scientific computing and coding.